Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.064
Filtrar
1.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416644

RESUMO

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Estudo de Associação Genômica Ampla , Antígenos Virais/genética , Antígenos Virais/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Latência Viral
2.
Nat Commun ; 15(1): 896, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316762

RESUMO

Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.


Assuntos
Doenças do Sistema Nervoso , Viroses , Infecção por Zika virus , Zika virus , Humanos , Antígenos Virais/metabolismo , Linfócitos T CD8-Positivos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doenças do Sistema Nervoso/metabolismo
3.
J Virol ; 98(2): e0126823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240588

RESUMO

Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.


Assuntos
Antígenos Virais , Herpesvirus Humano 8 , Plasmídeos , Sarcoma de Kaposi , Humanos , Antígenos Virais/metabolismo , DNA , Herpesvirus Humano 8/fisiologia , Ácidos Indolacéticos , Nucleotidiltransferases/genética , Sarcoma de Kaposi/virologia , Latência Viral , Proteínas Nucleares/metabolismo
4.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232124

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Assuntos
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Replicação Viral
5.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240591

RESUMO

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Assuntos
Proteases Virais 3C , Enterovirus Humano D , Interferon Tipo I , Transdução de Sinais , Humanos , Proteases Virais 3C/metabolismo , Antígenos Virais/metabolismo , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano D/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/metabolismo
6.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240593

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequências Repetidas Terminais/genética , Regulação Viral da Expressão Gênica
7.
PLoS Pathog ; 19(9): e1011673, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721955

RESUMO

The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.


Assuntos
Infecções por Enterovirus , Enterovirus , Proteínas Monoméricas de Ligação ao GTP , Poliovirus , Humanos , Enterovirus/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Células HeLa , Poliovirus/genética , Proteínas Virais/metabolismo , Antígenos Virais/metabolismo , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
8.
Front Immunol ; 14: 1215730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457689

RESUMO

Introduction: Dengue virus (DENV), the etiologic agent of dengue fever illness, represents a global public health concern, mainly in tropical and subtropical areas across the globe. It is well known that this acute viral disease can progress to severe hemorrhagic stages in some individuals, however, the immunopathogenic basis of the development of more severe forms by these patients is yet to be fully understood. Objective: In this context, we investigated and characterized the histopathological features as well as the cytokine profile and cell subpopulations present in liver tissues from three fatal cases of DENV in children. Methods: Hematoxylin and Eosin, Periodic Acid Schiff and Picro Sirius Red staining were utilized for the histopathological analysis. Immunohistochemistry assay was performed to characterize the inflammatory response and cell expression patterns. Results: Vascular dysfunctions such as hemorrhage, vascular congestion and edema associated with a mononuclear infiltrate were observedin all three cases. Liver tissues exhibited increased presence of CD68+ and TCD8+ cells as well as high expression of MMP-9, TNF-a, RANTES, VEGFR-2 mediators. Viral replication was confirmed by the detection of NS3 protein. Conclusion: Taken together, these results evidenced key factors that may be involved in the development of severe alterations in liver tissues of children in response to DENV infection.


Assuntos
Vírus da Dengue , Dengue , Humanos , Criança , Mediadores da Inflamação/metabolismo , Antígenos Virais/metabolismo , Fígado/patologia
9.
Virologie (Montrouge) ; 27(3): 35-49, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37476987

RESUMO

Enteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections. Due to the high genotypic diversity of EVs, molecules targeting highly conserved viral proteins may be considered for developing a pan-EV treatment. In this regard, the ATPase/Helicase 2C, which is a highly conserved non-structural protein among EVs, has essential functions for viral replication and is therefore an attractive antiviral target. Recent functional and structural studies on the 2C protein led to the identification of molecules showing ex vivo anti-EV activity and associated with resistance mutations on the coding sequence of the 2C protein. This review presents the current state of knowledge about the 2C protein from an antiviral target perspective and the mode of action of specific inhibitors for this therapeutic target.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/genética , Enterovirus/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais/metabolismo , Antígenos Virais/farmacologia , Antígenos Virais/uso terapêutico , Replicação Viral
10.
Microbiol Spectr ; 11(3): e0413822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125923

RESUMO

Enterovirus D68 (EV-D68) is a globally emerging pathogen causing severe respiratory illnesses mainly in children. The protease from EV-D68 could impair type I interferon (IFN-I) production. However, the role of the EV-D68 structural protein in antagonizing host antiviral responses remains largely unknown. We showed that the EV-D68 structural protein VP3 interacted with IFN regulatory factor 7 (IRF7), and this interaction suppressed the phosphorylation and nuclear translocation of IRF7 and then repressed the transcription of IFN. Furthermore, VP3 inhibited the TNF receptor associated factor 6 (TRAF6)-induced ubiquitination of IRF7 by competitive interaction with IRF7. IRF7Δ305-503 showed much weaker interaction ability to VP3, and VP3Δ41-50 performed weaker interaction ability with IRF7. The VP3 from enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) was also found to interact with the IRF7 protein. These results indicate that the enterovirus structural protein VP3 plays a pivotal role in subverting host innate immune responses and may be a potential target for antiviral drug research. IMPORTANCE EV-D68 is a globally emerging pathogen that causes severe respiratory illnesses. Here, we report that EV-D68 inhibits innate immune responses by targeting IRF7. Further investigations revealed that the structural protein VP3 inhibited the TRAF6-induced ubiquitination of IRF7 by competitive interaction with IRF7. These results indicate that the control of IRF7 by VP3 may be a mechanism by which EV-D68 represses IFN-I production.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Interferon Tipo I , Criança , Humanos , Enterovirus Humano D/fisiologia , Fator Regulador 7 de Interferon/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Antivirais/farmacologia , Antígenos Virais/metabolismo
11.
J Virol ; 97(6): e0009023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199627

RESUMO

Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.


Assuntos
Anticorpos Antivirais , Sítios de Ligação de Anticorpos , Capsídeo , Parvovirus Canino , Animais , Cães , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Epitopos/genética , Epitopos/análise , Parvovirus Canino/genética , Parvovirus Canino/metabolismo , Mutação , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Sítios de Ligação de Anticorpos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos Virais/metabolismo , Seleção Genética
12.
Sci Rep ; 13(1): 6977, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117225

RESUMO

In slowly progressive type 1 diabetes mellitus (SPIDDM), the pancreas shows sustained islet inflammation, pancreatitis, pancreatic acinar cell metaplasia/dysplasia (ADM), and intraepithelial neoplasia (PanIN), a precancerous lesion. The mechanisms underlying these changes remain unclear. The presence of enterovirus (EV) encoded-capsid protein 1 (VP1) and -2A protease (2Apro) and the innate immune responses of the pancreas were studied using immunohistochemistry and in situ hybridization in 12 SPIDDM and 19 non-diabetic control pancreases. VP1, 2Apro, and EV-RNA were detected in islets and the exocrine pancreas in all SPIDDM pancreases. Innate immune receptor, melanoma differentiation-associated gene 5 (MDA5), and interferon (IFN)-beta1 were intensified in the islets of SPIDDM patients with short disease duration. However, expressions of MDA5 and IFN-beta1were suppressed in those with longer disease duration. CD3+ T cell infiltration was observed in the VP1- and insulin-positive islets (insulitis) and exocrine acinar cells. CD11c+ dendritic cells (DCs) in islets were scarce in long-term SPIDDM. This study showed the consistent presence of EV, suggesting an association with inflammatory changes in the endocrine and exocrine pancreas in SPIDDM. Suppressed expressions of MDA5 and IFN-beta1, as well as decreased numbers of DCs in the host cells, may contribute to persistent EV infection and induction of ADM/PanIN lesions, which may potentially provide a scaffold for pancreatic neoplasms.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Ilhotas Pancreáticas , Pâncreas Exócrino , Humanos , Enterovirus/genética , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/metabolismo , Infecções por Enterovirus/metabolismo , Pâncreas Exócrino/metabolismo , Antígenos Virais/metabolismo , Ilhotas Pancreáticas/metabolismo
13.
Cell Rep ; 42(4): 112389, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058406

RESUMO

Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease outbreaks with neurological complications and deaths. We previously isolated an EV-A71 variant in the stool, cerebrospinal fluid, and blood of an immunocompromised patient who had a leucine-to-arginine substitution on the VP1 capsid protein, resulting in increased heparin sulfate binding. We show here that this mutation increases the virus's pathogenicity in orally infected mice with depleted B cells, which mimics the patient's immune status, and increases susceptibility to neutralizing antibodies. However, a double mutant with even greater heparin sulfate affinity is not pathogenic, suggesting that increased heparin sulfate affinity may trap virions in peripheral tissues and reduce neurovirulence. This research sheds light on the increased pathogenicity of variant with heparin sulfate (HS)-binding ability in individuals with decreased B cell immunity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Animais , Camundongos , Enterovirus/genética , Enterovirus Humano A/genética , Antígenos Virais/metabolismo , Heparitina Sulfato/metabolismo , Heparina/metabolismo
14.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768244

RESUMO

Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Estudos Retrospectivos , Proteínas Virais/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos Virais/metabolismo , Infecções por HIV/metabolismo , Microdomínios da Membrana/metabolismo , Glicoproteínas/metabolismo
15.
J Med Virol ; 95(1): e28255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36284455

RESUMO

Kaposi's sarcoma (KS) is the second most common tumor in people infected with human immunodeficiency virus worldwide, but its pathogenesis is still unclear. In this study, we discovered that the expression of GATA-binding protein 3 (GATA3) was lowly expressed in KS tissues and KSHV-infected cells, while microRNA-155 (miR-155) was highly expressed in KS serum and KSHV-infected cells. miR-155 promoted the proliferation, migration and invasion of KSHV infection by targeting GATA3. Further, The KSHV-encoded protein, the Latency associated nuclear antigen (LANA), promotes the proliferation, migration and invasion of KSHV-infected cells by regulating the miR-155/GATA3 axis. Regarding the molecular mechanism, c-Jun and c-Fos interact to form a complex. LANA upregulates the expression of c-Jun and c-Fos and enhances the formation of c-Jun/c-Fos complex. The complex binds to the -95∼-100 bp site of miR-155 promoter and transcriptionally activates miR-155. All in all, LANA enhances the c-Jun/c-Fos interaction, resulting in enhanced transcriptional regulation of miR-155 by the c-Jun/c-Fos complex, thereby downregulating GATA3 and promoting the proliferation, migration and invasion of KSHV-infected cells. The discovery of LANA/c-Jun/c-Fos/miR-155/GATA3 further refines the pathogenesis of KS, potentially opening a new avenue for developing effective drugs against KS.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Linhagem Celular , Antígenos Virais/metabolismo , Antígenos Nucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo
16.
Mol Biotechnol ; 65(3): 401-409, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35963985

RESUMO

In this study, silkworm larvae were used for expression of porcine rotavirus A (KS14 strain) inner capsid protein, VP6, and outer capsid protein, VP7. Initially, VP6 was fused with Strep-tag II and FLAG-tag (T-VP6), and T-VP6 was fused further with the signal peptide of Bombyx mori 30k6G protein (30k-T-VP6). T-VP6 and 30 k-T-VP6 were then expressed in the fat body and hemolymph of silkworm larvae, respectively, with respective amounts of 330 µg and 50 µg per larva of purified protein. Unlike T-VP6, 30k-T-VP6 was N-glycosylated due to attached signal peptide. Also, VP7 was fused with PA-tag (VP7-PA). Additionally, VP7 was fused with Strep-tag II, FLAG-tag, and the signal peptide of Bombyx mori 30k6G protein (30k-T-ΔVP7). Both VP7-PA and 30k-T-ΔVP7 were expressed in the hemolymph of silkworm larvae, with respective amounts of 26 µg and 49 µg per larva of purified protein, respectively. The results from our study demonstrated that T-VP6 formed nanoparticles of greater diameter compared with the ones formed by 30k-T-VP6. Also, higher amount of VP6 expressed in silkworm larvae reveal that VP6 holds the potential for its use in vaccine development against porcine rotavirus with silkworm larvae as a promising host for the production of such multi-subunit vaccines.


Assuntos
Bombyx , Rotavirus , Vacinas , Animais , Suínos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Bombyx/metabolismo , Larva/genética , Larva/metabolismo , Rotavirus/genética , Sinais Direcionadores de Proteínas , Antígenos Virais/metabolismo
17.
J Med Virol ; 95(1): e28400, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511115

RESUMO

Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Proteínas Virais , Animais , Camundongos , Antígenos Virais/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/virologia , Fosforilação , Proteólise , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
18.
Viruses ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275951

RESUMO

Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Miocardite , Pancreatite , Saururaceae , Humanos , Espécies Reativas de Oxigênio/metabolismo , Miocardite/tratamento farmacológico , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais/metabolismo , Antivirais/farmacologia , Pancreatite/tratamento farmacológico , Saururaceae/metabolismo , Fator Regulador 3 de Interferon/metabolismo
19.
PLoS Pathog ; 18(12): e1011033, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36534707

RESUMO

The humoral antibody response against Kaposi sarcoma-associated herpesvirus (KSHV) in infected individuals has been characterized demonstrating the latency-associated nuclear antigen (LANA) as the most antigenic KSHV protein. Despite the antigenicity of the protein, specific LANA epitopes have not been systematically characterized. Here, we utilized a bacteriophage T7 library, which displays 56-amino acid KSHV LANA peptides with 28-amino acid overlap (VirScan), to define those epitopes in LANA targeted by antibodies from a cohort of 62 sub-Saharan African Kaposi sarcoma (KS) patients and 22 KSHV-infected asymptomatic controls. Intra- and inter-patient breadth and magnitude of the anti-LANA responses were quantified at the peptide and amino acid levels. From these data, we derived a detailed epitope annotation of the entire LANA protein, with a high-resolution focus on the N- and C-termini. Overall, the central repeat region was highly antigenic, but the responses to this region could not be confidently mapped due to its high variability. The highly conserved N-terminus was targeted with low breadth and magnitude. In a minority of individuals, antibodies specific to the nuclear localization sequence and a portion of the proline-rich regions of the N-terminus were evident. In contrast, the first half of the conserved C-terminal domain was consistently targeted with high magnitude. Unfortunately, this region was not included in LANA partial C-terminal crystal structures, however, it was predicted to adopt predominantly random-coil structure. Coupled with functional and secondary structure domain predictions, VirScan revealed fine resolution epitope mapping of the N- and C-terminal domains of LANA that is consistent with previous antigenicity studies and may prove useful to correlate KSHV humoral immunity with pathogenesis.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Epitopos , Linhagem Celular , Antígenos Virais/metabolismo , Peptídeos , Aminoácidos
20.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560739

RESUMO

OBJECTIVES: Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS: Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS: Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS: Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Rotavirus , Rotavirus , Pré-Escolar , Humanos , Antígenos Virais/genética , Antígenos Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Diarreia , Genótipo , Antígenos do Grupo Sanguíneo de Lewis/genética , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...